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Summary:

Stability analysis algorithms coupled with a robust Newton-Krylov steady state iterative

solver are used to understand the behavior of the 2D model problem of thermal convection

in a 8:1 differentially heated cavity. Parameter continuation methods along with

bifurcation and linear stability analysis are used to study transition from steady to transient

flow as a function of Rayleigh number. To carry out this study the steady state form of the

governing PDEs is discretized using a Galerkin/Least Squares Finite Element formulation,

and solved on parallel computers using a fully coupled Newton method and

preconditioned Krylov iterative linear solvers. Linear stability analysis employing a large

scale eigenvalue capability is used to determine the stability of the steady solutions. The

boundary between steady and time dependent flows is determined by a Hopf bifurcation

tracking capability that is used to directly track the instability with respect to the aspect

ratio of the system and with respect to mesh resolution. The effect of upwinding

stabilization terms in the finite element formulation on the computed value of critical

Rayleigh number is investigated. The Hopf bifurcation signaling the onset of flow is

determined to occur at a critical Rayleigh number of .

1.  Introduction

This manuscript presents a computational stability analysis of the model problem of

confined thermal convection flow in an 8:1 enclosure. The model problem is fully

described in reference [1]. The computational method employs a robust steady state
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Newton-Krylov solver for the nonlinear systems, continuation methods for tracking

solutions, and linear stability analysis capabilities. We will show how these capabilities

provide a powerful tool for providing design information for systems with bifurcations.

Using these techniques computationally efficient maps for stability regions for entire

parameter spaces can be generated. However, while the locus of transitional states can be

determined with these methods, transient simulations are needed to study the details of the

time dependent supercritical response of the system.

The power of applying bifurcation analysis algorithms to the study of flow instabilities has

been well documented in numerous applications, most famously the Rayleigh-Benard and

Taylor-Couette systems. An excellent review of this area by Cliffe, Spence, and Tavener

[2] has recently been published. The reader is referred to that work and Govaerts [3] for

various formulations of the bifurcation tracking algorithms. There is limited experience in

applying these algorithms for large scale PDE discretization that use approximate iterative

linear solvers.

The model problem of buoyancy driven flow in a differentially heated cavity is described

in the first contribution to this issue by Christon, Gresho, and Sutton. The fluid flow and

heat equations are discretized using the MPSalsa unstructured grid finite element code,

which has been developed for robust steady state solves on distributed memory parallel

computers [4,5,6,7,8,9]. This code uses a Galerkin/Least-Squares discretization scheme,

and includes a switch that can turn off the SUPG upwinding terms present in that

formulation. The formulation is described in Section 2.1 and steady state solution method

in Section 2.2.

A linear stability analysis capability has been implemented with MPSalsa by combining a

Cayley transformation with the Arnoldi-based P_ARPACK eigensolver [10,11]. This

capability has been verified and validated for numerous fluid flow applications and has

demonstrated parallel scaling to millions of unknowns [12,13], and is briefly described in

Section 2.3. The LOCA (Library of Continuation Algorithms) library [14] has also been

interfaced with the MPSalsa code for directly calculating bifurcations [15]. A Newton-

based algorithm in LOCA is used to converge directly to the instability, converging the

parameter value and solution simultaneously. The Hopf tracking algorithm is presented in

detail in Section 2.4.

In Section 3.1, the critical value of the Rayleigh number for the transition between stable

steady flows and time-dependent flows is found. The instability is located with the

eigensolver, and found to be a Hopf bifurcation signifying an oscillatory instability.

Continuation of the Hopf point with respect to a second parameter, the aspect ratio of the
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box, traces neutral stability curves and provides insight into the structures of solution

branches and the behavior of the system. A mesh resolution study is performed in Section

3.2, using the Hopf algorithm to find the instability on each mesh. The effect of the

upwinding terms on the convergence with mesh of the critical Rayleigh number is

documented in Section 3.3.

2.  Numerical Methods Overview

2.1.  Galerkin / Least-Squares Finite Element Formulation

The governing transport PDEs describing fluid flow and thermal energy transfer are

presented in Table 1 in residual form. In these equations, the unknown quantities are , ,

and ; these are, respectively, the fluid velocity vector, the hydrodynamic pressure, and

temperature. The constitutive relations for a Newtonian stress tensor and the Fourier

law for the heat flux vector qc are used to close this system of equations.

The continuous problem, defined by the transport equations, is approximated by a

Galerkin Least Squares (GLS) formulation [16,17,18,19]. This formulation allows for

equal order interpolation of pressure and velocity (without spurious pressure solutions),

and for stabilization of highly convected flows. The resulting GLS equations are shown in

Table 2.

Momentum

Total Mass

Thermal
Energy

Table 1:   Governing Transport PDEs

Momentum

Total Mass

Thermal
Energy

Table 2:   Galerkin Least Squares Formulation of Transport PDEs
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The GLS total mass residual equation in expanded form is given in Eqn. 1. The first term

is the Galerkin term while the second pressure stabilization term is what allows for equal

order interpolation.

(1)

The Newtonian stress tensor, , is expanded to include the pressure, , and the viscous

stress tensor term, . This expansion exhibits the weak form of a Laplacian operator

acting on pressure

(2)

produced by the GLS formulation of the total mass conservation equation. The existence

of this well conditioned matrix in the FE discretization of the GLS equations allows the

solution of the linear systems with a number of algebraic and domain decomposition type

preconditioners. This is in contrast to other formulations, such as Galerkin methods using

mixed interpolation, that produce a zero block on the total mass continuity diagonal.

The second terms in the GLS formulations of momentum and thermal energy are the

upwinding terms for stabilizing highly convective flows. In section Section 3.3 we will

presents results with these terms turned off. This is done by setting and to zero in

these two equations without setting  to zero in the total mass balance.

2.2.  Overview of Parallel Newton-Krylov Implementation

In this section, a brief overview of the parallel numerical solution procedure for

computing steady states is presented in varying degrees of completeness. References are

provided to more complete sources on each of the topics.

2.2.1.  Problem Partitioning

Chaco [20], a general graph partitioning tool is used to partition the FE mesh into

subdomains and make subdomain to processor assignments. Chaco constructs partitions

and subdomain mappings that have low communication volume, good load balance, few

message start-ups and only small amounts of network congestion. For the results in this

paper, multi-level methods with Kernighan-Lin improvement were used. For a detailed

description of parallel FE data structures and a discussion of the strong link between

partitioning quality and parallel efficiency see [21].

FP Φ
∂ρ
∂t
------ ∇ ρu( )⋅+ 
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2.2.2.  Newton-Krylov Methods

A Newton-Krylov method [22] is an implementation of Newton’s method in which a

Krylov iterative solution technique is used to approximately solve the linear systems that

are generated at each step of Newton’s method. Specifically, to solve the nonlinear system

, the Krylov iterative solver is applied to determine an approximate solution of

the Newton equation

, (3)

where is the Jacobian matrix of at the current iterate of . A Newton-Krylov

method is usually implemented as an inexact Newton method. That is, one chooses a

forcing term and then applies a Krylov method until an iterate satisfies the

inexact Newton condition

. (4)

A more complete discussion of the details of this inexact Newton implementation can be

found in [22].

2.2.3.  Parallel Preconditioned Krylov Implementation

The linear subproblems generated from the inexact Newton method are solved by

preconditioned Krylov methods as implemented in the Aztec solver library [7]. The

parallel Krylov algorithms implemented in Aztec include techniques such as the restarted

generalized minimal residual [GMRES(k)] and transpose-free quasi-minimal residual

techniques for nonsymmetric systems. It is well known that the overall performance of

Krylov methods can be substantially improved when one uses preconditioning.

The preconditioners that we use in our subsequent calculations are based on algebraic

additive Schwarz domain decomposition (DD) preconditioners [23] with variable

overlapping between subdomains. This method corresponds to projecting the equations

onto a series of overlapping subdomains and solving each subsystem. Since these

subdomain solves are independent, they can be performed concurrently. Overlapping

corresponds to increasing the size of the locally defined subdomain to include additional

levels of FE nodes outside of the processor’s assigned nodes. Thus a single level of

overlapping uses only information from FE nodes that are connected by an edge (in the FE

connectivity graph) that was cut by the original subdomain partition. Successive levels of

overlap now use this method recursively by considering the previously overlapped points

to now be assigned nodes to the expanded subdomain.

F x( ) 0=

J x( )s F x( )–=

J x( ) F x

η 0 1 ),[∈ sk

F x( ) J x( )sk+ η F x( )≤
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2.3.   Linear Stability Analysis Algorithms

Having a fully assembled Jacobian matrix and robust linear solvers enables the use of

stability analysis tools. Details relating to the methods and parallel implementation of the

linear stability analysis algorithms can be found in [24,12,13,25]. The analysis begins at a

given steady state solution point. A normal mode linear stability analysis produces a

linearization of the evolution equations around this steady state solution and produces a

generalized eigenvalue problem of the form

, (5)

where is the Jacobian matrix, is the mass matrix (i.e. coefficient matrix of time

derivative terms), is an eigenvector (generally complex), and its associated eigenvalue

(also complex). A generalized Cayley transformation, which includes two adjustable real

parameters, and , is used to reformulate the generalized eigenvalue problem into an

ordinary eigenvalue problem for the transformed eigenvalues :

. (6)

A simple relationship exists between the transformed and original eigenvalues,

Appropriate choices of and are made so that the eigenvalues of interest (those with

largest real part) are mapped to large . More details on appropriately choosing the

Cayley parameters are given in previous works [12,13].

The eigenvalue problem defined in Eqn. 6 is solved using Arnoldi’s method with a version

of the P_ARPACK software [10,11] driven by software in the LOCA library for

performing the generalized Cayley transformation [14]. The approximate matrix

inversions are solved using the Aztec package, exactly the same as in the Newton

iterations.

2.4.  Hopf Bifurcation Tracking Algorithm

A set of Newton algorithms for directly locating and tracking a bifurcation points has been

implemented as part of the LOCA library at Sandia National Labs [14]. These have been

developed to be relatively non invasive to simplify implementation within an application

code and to work with codes that are based on iterative linear solvers.

Background on bifurcation theory can be found in several texts [26,27]. Briefly,

bifurcations are points on a steady state solution branch where the real part of one or more

eigenvalues passes through zero as the branch is followed with respect to a key parameter.

Jz λBz=

J B

z λ

σ µ
γ

J σB–( ) 1– J µB–( )z γz=

γ λ µ–( ) λ σ–( )⁄=

σ µ λ
γ
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In the differentially heated cavity application, we will see that steady solutions encounter a

Hopf bifurcation at a certain value of the Rayleigh number, referred to as the critical

Rayleigh number. A Hopf bifurcation is an instability where a steady solution becomes

unstable to oscillatory modes, and is characterized by a complex conjugate pair of

eigenvalues that are purely imaginary (i.e. ). This definition, together with

Eqn. 5, are used to define a system of equations that define the Hopf bifurcation [28,2,3].

In real arithmetic, this leads to a system of unknowns ( , , , and ). Here

is the length of (and the order of ), while and are vectors (of length )

containing the real and imaginary parts of the eigenvector, . The

equations specifying the Hopf bifurcation are then,

(7)

The first vector equation requires a steady state solution (where is the vector of

residuals), the next two vector equations specify that a purely imaginary eigenvalue exists,

and the last two scalar equations are used to set the length and phase of the eigenvector.

The unknown is the critical parameter value, which is solved for as part of the solution,

and is assigned to the Rayleigh number for all calculations in this paper. The scaling

vector  can be almost any arbitrary vector and is fixed throughout the calculations.

These equations are solved using a Newton method. The linearized system used

to determine the solution updates is:

(8)

This derivation allows the mass matrix to depend on the solution vector and the parameter,

though these terms can often be neglected. Instead of forming and solving the by
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matrix system in Eqn. 8, a bordering algorithm is used at each Newton step. This

has the advantage of requiring fewer modifications to an existing code and of using less

memory. The new formulation requires two linear solves of the matrix and three solves

of the complex matrix  (shown below in expanded real form),

(9)

(10)

(11)

(12)

. (13)

The temporary vectors named alphabetically through , which are computed by those

linear solves, are used to calculate the updates to the solution vector as follows:

(14)

(15)

(16)

(17)

(18)

The three complex matrix equations (shown in real form in Eqn. 11, Eqn. 12, and Eqn. 13)

are solved using a novel implementation for the solution of complex matrices with an

existing real-valued sparse iterative linear solver [29]. This step is the main numerical

difficulty in solving for the Hopf. Not only is this linear system double the order of Eqn. 3,

but also the matrix is singular at the Hopf point. Although this algorithm would break

down if one attempted to converge to the Hopf point to machine precision, our initial

experience is that this algorithm works well as long as the iterative linear solver tolerance

is set to require high accuracy, such as a  reduction in the linear residual.
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3.  Application of Scalable Stability Analysis Algorithms

In this section we will presents results for applying the numerical methods presented in

Section 2 to the benchmark problem. In this section we use the terms centro-symmetric to

describe eigenmodes that preserve the symmetry of the equations and boundary

conditions, as described in reference [1], and symmetry-breaking to describe those that

break the centro-symmetry.

3.1.  Results for 80x180 Mesh

Results are shown for studying bifurcations in the thermal cavity problem. A mesh of

80x180 bilinear finite elements, highly graded towards the walls, was used for these

calculations. The problem of 58644 unknowns was solved in parallel on 24 333Mhz

Pentium processors of the Sandia-Intel Tflop machine (ASCI Red). A typical matrix fill

requires 0.35 seconds and an iterative matrix solve (using a domain decomposition

preconditioner with overlap and a GMRES solver) about 15 seconds, and 3-6 Newton

iterations were sufficient to converge to a steady state using a guess from a nearby

parameter value, for a total of 1-2 minutes. Figure 1 shows the evolution of the three

rightmost eigenvalues as a function of the Rayleigh number. Two Hopf bifurcations are

detected, the first is a centro-symmetric mode near and a second

symmetry-breaking mode near . Because of the large imaginary parts, an

Arnoldi space of was needed to converge the first several eigenvalues using Cayley

parameters of and . An eigensolve required about 30 minutes.

While we believe the nonlinear solver and the eigensolver are converged to 3 or more

digits, the calculation is not converged with mesh spacing. This will be addressed in

Section 3.2.

Three streamline plots are shown in Figure 2: the solution at the bifurcation point, one of

the eigenvectors ( ) for the centro-symmetric instability at this point, and one of the

eigenvectors for the symmetry-breaking instability at the second Hopf bifurcation. The

symmetry of the solutions is diagnosed visually by observing that symmetric solutions

have zero velocity at the center of the cavity while the symmetry-breaking eigenmodes

have a nonzero streamfunction contour passing through this point.

The Hopf bifurcation tracking algorithm was run using results from the eigenvalue

calculation as initial guesses for , , and . The results of tracking the Hopf bifurcation

with respect to the aspect ratio of the cavity are shown in Figure 3. Calculating a Hopf

bifurcation starting from a converged solution at a different parameter value required

Ra 3.61x10
5

=

Ra 3.86x10
5

=

180

σ 2000= µ 5000=

y

y z ω
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about 30 minutes. Once started, the curves were traced automatically. The two

bifurcations seen in Figure 1 were initially tracked, and it was found that (for this mesh)

the centro-symmetric bifurcation (labeled CS(8)) always occurs at lower parameter values

than the symmetry-breaking (labeled SB(8)). Eigenvalue calculations at aspect ratios of

7.0 and 9.0 revealed that other modes had overtaken these modes. Tracking the locus of

neutral stability points of these two symmetry-breaking modes (labeled SB(7) and SB(9))

show how the leading destabilizing mode transitions from the SB(7) to the CS(8) to the

SB(9) mode. The two transition points (near aspect ratios of 7.4 and 8.6) are codimension

2 bifurcation points where two Hopf bifurcations occur simultaneously. Much more

complicated dynamics would be expected if supercritical Rayleigh numbers were studied

at these aspect ratios.

3.2.  Mesh Resolution Study

In the previous section we determined the critical Rayleigh number to be

for the mesh of elements (corresponding to unknowns) with the GLS

discretization. The destabilizing mode was found to be centro-symmetric. The results of a

mesh resolution study to see how the critical Rayleigh number for this mode depends on

mesh resolution is shown in Figure 4. Seven predictions are shown, two for coarser

meshes, and four at finer meshes then the previous results. Since the meshes are not

uniform, but graded towards the edges, we chose a measure of the mesh spacing

, where N is the number of total unknowns for that given mesh. For the mesh

refinement study, no eigenvalue calculations were needed, just the Hopf tracking

algorithm. For each successively finer mesh, the solution vector and the two eigenvectors

were interpolated from the previous mesh and used as initial guesses (along with the

previous values for the Rayleigh number and frequency). In this way, the critical Rayleigh

number for this mode was directly located in 4-5 Newton iterations for each new mesh.

This is a great savings in both compute and user time over locating the bifurcation points

with just an eigenvalue approximation capability.

The number of unknowns for the seven meshes were , , , ,

, , and . The critical Rayleigh number on the finest mesh of

elements was found to be . This calculation required four

Newton iterations to converge and took hours on processors. The convergence of

the critical Rayleigh number with mesh is shown to be second order in Figure 5. Here, the

error in the critical Rayleigh number (using as the reference solution, as

computed in Section 3.3) is plotted against the mesh spacing on a log-log plot and found

to have a slope of .
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178020 302036 708292

256x688 Ra 3.156x10
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To verify the results of the tracking algorithm, an eigenvalue approximation run was

performed at these conditions. Using an Arnoldi space of size and Cayley parameters

of , the largest eigenvalues were converged within the specified

tolerance in less then four hours on processors. A plot of the computed eigen

spectrum together with data for the five rightmost pairs is shown in Figure 6. While there

is a purely imaginary pair of eigenvalues as expected, the results show a complex

conjugate pair of eigenvalues with positive real part. This results shows that, as the mesh

was refined, the symmetry-breaking mode overtook the centro-symmetric mode as the first

destabilizing mode. This is not a failing of the Hopf tracking algorithm, which

successfully converged to a solution based on the initial guess it was given, yet points to

the need to have both the bifurcation tracking and the complementary eigenvalue

approximation capabilities. The Hopf algorithm was relaunched using these unstable

modes for the and vectors, and converged to a critical Rayleigh number of

.

3.3.  Effects of Upwinding

All of the previous results were obtained with the GLS formulation, which includes the

convective stabilization terms that are essentially equivalent to the SUPG (Streamwise

Upwinding Petrov-Galerkin) method. To study the effect of the upwinding terms on the

prediction of the instability for this highly convective flow, we turned off the upwinding

terms in our formulation. This results in a Pressure Stabilized Galerkin (PSG) formulation

for which we recalculate the critical Rayleigh number. For the finest mesh, there was no

significant difference in the number of iterations needed to solve the linear sub-problems

for the two formulations. A comparison of the critical Rayleigh number for the three finest

meshes for both the GLS solution (with SUPG terms) and the PSPG formulation (without

upwinding) are shown in Table 3. In addition, the extrapolated value of the critical

Rayleigh number as is shown in the final row of the table. This value is obtained

using the first and third rows, where the mesh has been doubled in each direction, and

assuming  convergence for both schemes.

From the extrapolated values, there is strong evidence that both formulations are

converging to the same prediction of the critical Rayleigh number. This confirms the

expectation that the effect of the upwinding terms disappears as . The prediction of

the PSG formulation is found to be much more mesh insensitive then the upwinded

solution. From these results, our best estimate for the critical Rayleigh number is the

extrapolated value from the PSPG formulation: .

150

σ µ– 1000= = 27

128

y z
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The period of an oscillatory solution starting at this point is given by , which (in

the time units given in the problem description) is . The stability analysis

algorithms in LOCA do not a presently include the capability of determining whether the

bifurcation is subcritical or supercritical, which is to say, whether a stable branch of

oscillating solutions emanates from the bifurcation point, though such algorithms are

being developed [30]. The second mode to go unstable is the centro-symmetric mode,

which was found on the finest mesh with the PSPG formulation to bifurcate at

with a period of . This is the same mode that was tracked in

the initial mesh resolution study in Section 3.2, and so this value of the critical Rayleigh

number was used as the reference value in determining order of convergence.

4.  Summary and Conclusions

Stability analysis algorithms have been used to locate the Hopf bifurcations where steady

flow of a Boussinesq fluid in an 8:1 thermal cavity goes unstable. The set of four coupled

PDEs are discretized using a Galerkin/Least-Squares (GLS) formulation for unstructured

grids on parallel computers as implemented in the MPSalsa code. A fully-coupled inexact

Newton method together with a preconditioned Krylov iterative solver from the Aztec

package are used to solve directly for steady state solutions on a parallel computer. An

eigenvalue approximation capability, based on the Cayley transformation and the

ARPACK library, and which has been implemented to work with iterative linear solvers, is

used to initially locate the bifurcations. A Hopf tracking algorithm form the LOCA library

is then used, for one mesh, to track out the neutral stability curves as a function of the

aspect ratio. Two double Hopf bifurcations are found to exist nearby in parameter space.

The Hopf tracking algorithm is also used to perform mesh resolution studies on the critical

Rayleigh number without the need of searching for the bifurcations with the eigensolver.

We find that the GLS formulation, which includes SUPG-type upwinding terms, would

require a finer mesh to predict the instability to the same accuracy as the PSG formulation,

which does not include upwinding terms.

Our best prediction for the critical Rayleigh number for the onset of unsteady convection

is . Although our linearized system about the steady state predicts a

period of , our methods do not speak to the stability of the oscillatory branch that

starts at this critical Rayleigh number or to the existence of any stable periodic orbits.

The methods described here, which use the MPSalsa, Aztec, ARPACK, and LOCA

libraries, have been implemented to be scalable on distributed memory parallel computers

and to work with unstructured grid discretizations in two or three dimensions. The same

2π( ) ω⁄
T 3.67=

Ra 3.115x10
5

= T 3.39=

Ra 3.0604x10
5

=

3.67
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code can be used to aid in the design of systems with chemical reactions, variable physical

properties, and with complex geometries.

We believe that stability analysis algorithms are the appropriate tool for locating the

parameter value for the onset of an instability, and tracking how the instability is

dependent on a second system parameter. This is the crucial information needed when

trying to design a system to operate on a given side of the instability (usually the steady

side). When the dynamical behavior of an unsteady system is desired, an efficient and

accurate transient capability is the appropriate tool, though having a stability analysis

capability can be valuable in that case as well, to help target the transient runs.
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 Figure 1: A plot showing the movement of the three leading eigenvalues as a function of the

Rayleigh number shows two Hopf bifurcations, the first occurring near . The

mesh of 58644 unknowns requires 1-2 minutes for a steady state solve and about 30 minutes for an

eigenvalue calculation on 24 Processors of the Sandia-Intel Tflop (ASCI Red) machine. The curve

labeled CS has centro-symmetric eigenfunctions, and the curve labeled SB has symmetry-breaking

eigenfunctions.

Figure 2: Three streamline plots are shown: the first is the solution at the first Hopf bifurcation at

, the second is the centro-symmetric eigenfunction at that point, and the third is

the symmetry-breaking eigenfunction at the second Hopf bifurcation at .

 Figure 3: Neutral stability curves showing the locus of Hopf bifurcations for a range of aspect

ratios, calculated directly using the Hopf tracking algorithm. The destabilizing mode at an aspect

ratio of 8.0 is no longer the destabilizing mode at aspect ratios below 7.4 or above 9.6.  The curve

labeled CS has centro-symmetric eigenfunctions, and the curve labeled SB has symmetry-breaking

eigenfunctions.

 Figure 4: Convergence study of the location of the critical Rayleigh number for the Hopf

bifurcation with mesh resolution. The x-axis is an estimate of a mesh spacing, . Starting with the

third coarsest mesh, which had a critical  and has solutions shown in Figure 2,

the results on the final meshes were calculated directly using the Hopf tracking algorithm using the

results of a mesh interpolation utility. The finest mesh has  unknowns and has a critical

Rayleigh number of .
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Figure 5: The same mesh convergence data for the critical Rayleigh number is plotted on a log-log

plot to demonstrate the second order convergence rate. The reference solution of

 is taken from the results described in Section 3.3.

Figure 6: Part of the eigen spectrum for the finest mesh at , which is where the

Hopf bifurcation tracking algorithm located the instability. In addition to the expected pair of

eigenvalues on the imaginary axis, we can see that another complex conjugate pair of eigenvalues is

in the right half-plane. The five rightmost eigenpairs are tabulated.
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# of Unknowns Racr SUPG Racr PSPG

178020  3.2637 x 105 a

a. Note: These numbers were calculated after the conference in June 2001 to better
compare the convergence of the same mode with two different formulations.

3.0768 x 105

302036  3.1833 x 105 a 3.0678 x 105

708292 3.1153 x 105 3.0645 x 105

Extrapolation 3.0658 x 105 3.0604 x 105

Table 3:  Location of the first critical Hopf bifurcation as a function of mesh resolution for the GLS
formulation, which includes the SUPG upwinding terms, and the PSPG formulation, where upwinding
terms are NOT included in formulation. The third mesh has double the elements in each direction of the

first mesh, so an O(h2) extrapolation of the critical value is shown in the final row.
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